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Impact-based forecasts require validation
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Weather affects society: How? How much? When? Where?
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550m users (2010)
1.2bn users (2013)

1.8bn users (2016)
>2.8bn users (2022)
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Social sensing of floods in the UK

Arthur, Boulton, Shotton & Williams (2018) PLoS ONE 13(1): e0189327.
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Reports coming through that Halifax Road in
Todmorden is still being used despite being
flooded. Vehicles are now getting stuck
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Can we detect floods using Twitter?

Twitter dataset: 17,828,704 tweets from 2015-2016.
Keywords: “flood”, “flooded”, “flooding”

Flood dataset: Known flood events in England & Wales
(Flood Forecasting Centre).

Method: Correlate Tweets per day vs Floods per day
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Filtering improves data quality

* Filter by timezone (UK) and language (English)
* Remove “bot” accounts and retweets

* Filter for relevance [Text-based Naive Bayes classifiers trained on
thousands of human-annotated examples]

All | Filtered
Tweets Remaining 17828704 122281
Correlation 0.206 I 0.673

Temporal correlation: Tweets per day vs Floods per day
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Why use inference?
<1% tweets have GPS coordinates
<5% tweets have bounding boxes

Inference can locate 40-70% tweets.
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Validation

Social “floodiness” normalised Known floods in Flood
by population density. Forecasting Centre database.

Arthur, Boulton, Shotton & Williams (2018) PLoS ONE 13(1): e0189327.



Other case studies
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Young, J.C., Arthur, R., Spruce, M.D., Williams. H.T.P. (submitted)
Social sensing of flood impacts in India: a case study of Kerala
2018.
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Socilal impacts of named storms in the UK
Spruce, Arthur, Williams (2020) Meteorological Applications, 27(1), e1887.
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Storm Brian (2017) observed by social sensing.

Can we observe
Impacts of
extreme weather?

Dataset: >100m tweets
during 2017/2018 storm
season (8 named storms)



Soclal content during Storm Brian

Sentiment
Category Tweet Text Examples Score
Humour "Brian? What kind of name is that for a storm? Everyone knows Brian is a snail." 0.60
"Am | the only one to find it really hard to take a storm called #Brian seriously? -0.21
"And Brian? Really? Storm Rambo or Terminator would be far better than 0.27
#StormBrian" '
Damage “This is the scene this morning as the waves have damaged the Harbour Office 096
during Storm Brian.” '
“Storm Brian damage causes floodlight damage. Revised home game vs
_ Y -0.40
@ChesterCityFC
“Scaffolding in Helsby High Street BLOWN OVER by #StormBrian high winds” 0.00
Disruption “Train delay: National Rail have warned of delays due to high winds from Storm 0.5
Brian” '
“Storm Brian latest - tree blocks railway lines and hovercraft suspended” -0.41
“Major motorway was CLOSED after Storm Brian floods carriageway” -0.02
Warnings '#StormBrian could lead to travel disruption this weekend.’ -0.06
'Storm Brian set to batter UK with heavy rain and 70mph winds.’ -0.20
‘Take care on the coast folks. Waves are quite high with #StormBrian’ 0.16
Observations  “It’s really windy out there!” 0.20
“Storm Brian seems to have arrived now...” 0.00
“Storm Brian just brought in the heaviest rain shower |'ve ever seen.....it really _f55

scared our 2 cats.”
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Sentiment by hazard (all storms)

Precipitation Tweet Sentiment
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Discussion (1): Known knowns

Social sensing can detect & locate extreme weather events.
Weather impacts can be observed & characterised.

Operational value for meteorologists: situation awareness,
Impact-based forecast validation.
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Discussion (2): Known unknowns

Methods can be improved. Social media landscape always
changing. Continual work-in-progress.

Limitations: Data volume is patchy. Data sources are few —
mostly Twitter, others are private. Demographic bias. Noise.

Opportunities: Better impact measurement. Image and video
content. Global reach. Automated monitoring of impacts.




Discussion (3): Weather and soclety

People will tell you everything — you just need to listen!
People talk most about impacts that are important to them.

Social sensing vs citizen science

— Social sensing: People as sensors, unsolicited, high volume, unstructured
— Citizen science: People as participants, solicited, low volume, structured

Both approaches needed to understand how weather affects people.
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